下面是范文网小编收集的高中高三数学说课稿3篇(数学高中说课稿范文),以供借鉴。
高中高三数学说课稿1
一、教材分析:
本节课是《普通高中课程标准实验教科书数学》(人民教育出版社、课程教材研究所A版教材)选修2-2中第§1.1.3节.作为导数概念的下位概念课,它是在学生学习了上位概念——平均变化率,瞬时变化率,及刚刚学习了用极限定义导数基础,进一步从几何意义的基础上理解导数的含义与价值,是可以充分应用信息技术进行概念教学与问题探究的内容.导数的几何意义的学习为下位内容——常见函数导数的计算,导数是研究函数中的应用及研究函数曲线与直线的位置关系的基础.因此,导数的几何意义有承前启后的重要作用.
二、教学目标
【知识与技能目标】
(1)知道曲线的切线定义,理解导数的几何意义;
——让学生感知和初步理解函数 在 处的导数 的几何意义就是函数 的图像在 处的切线的斜率,即 =切线的斜率.
(2)导数几何意义简单的应用.
——用导数的几何意义解释实际生活问题,初步体会“逼近”和“以直代曲”的数学思想方法.
【过程与方法目标】
(1) 回顾圆锥曲线的切线的概念,复习导数概念,寻找 在 处的瞬时变化率的几何意义;
(2) 观察P7上探究问题,利用几何画板进行探究,由学生参与操作,发现割线 变化趋势,分析整理成结论;
(3) 通过学生经历或观察感知由割线逼近“变成”切线的过程,理解导数的几何意义;
(4) 高台跳水模型中,利用导数的几何意义,描述比较 在 , , 处的变化情况,达到梳理新知的目的,渗透“以直代曲”的数学思想;
(5) 通过分析导数的几何意义,研究在实际生活问题中,用区间较小的范围的平均变化率,来解决实际问题的瞬时变化率.
【情感态度价值观目标】
(1) 经过几何画板演示割线“逼近”成切线过程,让学生感受函数图像的切线“形成”过程,获得函数图像的切线的意义;
(2) 利用“以直代曲”的近似替代的方法,养成学生分析问题解决问题的方法,初步体会发现问题的乐趣;
(3) 增强学生问题应用意识教育,让学生获得学习数学的兴趣与信心.
三、重点、难点
重点:导数的几何意义,导数的实际应用,“以直代曲”数学思想方法.
难点:对导数几何意义的理解与掌握,在每处“附近”变化率与瞬时变化率的近似关系的理解.
关键:由割线 趋向切线动态变化效果,由割线“逼近”成切线的理解.
四、教学过程
教学环节
教学内容
师生互动
设计意图
高中高三数学说课稿2
一、学习目标
1.知识目标:研究曲线的切线,从几何学的角度了解导数概念的背景,明确瞬时变化率就是导数,掌握求曲线切线斜率的一般方法。
2.能力目标:通过嫦娥一号绕月探测卫星变轨瞬间的瞬时速度和运动的方向为背景,从极限入手,培养学生的创新意识和数形转化能力。
3.情感目标:通过运动的观点,体会曲线切线的内涵,挖掘数形关系,激发学生学习数学的热情。
二、教学重点
曲线切线的概念形成,导数公式的理解和运用。
三、教学难点
理解曲线切线的形成是通过逼近的方法得出的。引导学生在平均变化率的基础上探求瞬时变化率。
四、教学过程
1.新课引入,创设情景
①(大屏幕显示)嫦娥一号绕月探测卫星运行轨迹以及四次变轨的全过程。
②讨论问题:()卫星在每次变轨的瞬间不仅有瞬时速度,而且要研究它运动的方向。引出本节课主要研究的课题——曲线的切线。
2.概念形成,提出问题
①(大屏幕显示)分析卫星在变轨瞬间与变轨前的位置关系,引出曲线的割线。
②由运动的观点、极限的思想,归纳出曲线切线的概念。以及求曲线切线斜率的一种方法。
3.转换角度,分析问题
①引入增量的概念,在曲线C上取P(x0、y0)及邻近的一点Q(x0+△x,y0+△y),过P、Q两点作割线,分别过P、Q作y轴,x轴的垂线相交于点M,设割线PQ的倾斜角β,.
②割线斜率用增量表示的形式不变。(大屏幕显示)改变P的邻近点Q的位置、曲线的类型、倾斜角的性质,发现tanβ表示的形式始终不变。左、右邻近点的讨论,为下面说明极限的存在做准备。
4.归纳总结,解决问题
①(大屏幕显示)由于△x可正可负,
但△x≠0,研究△x无限趋近于0,
用极限的观点导出曲线切线的斜率。
②讨论问题:引导学生将这一运动过程转化为已学的代数问题。
k==
点评公式,重点强调平均变化率和瞬时变化率之间的关系,提出导数。同时引导学生归纳出求曲线切线斜率的一般方法和步骤
5.例题剖析,深化问题
例:曲线的方程f(x)=x2+1求此曲线在点P(1,2)处的切线的方程
6.学生演板,落实问题
①已知曲线y=2x2上一点A(1,2),求
(1)点A处的切线的斜率;
(2)点A处的切线的方程。
②求曲线y=x2+1在点P(-2,5)处的切线方程。
7.课堂小结
8.作业
P125第6、7、8、9题
高中高三数学说课稿3
高三数学二面角说课稿
二面角说课稿一、教材分析
1.教材的地位与作用
二面角是我们日常生活中经常见到的、很普通的一个图形。“二面角”是新编教材《数学》第二册(下a)中9.6的内容,它在学生学过空间中异面角、线面角之后,又要重点研究的一种空间的角,它也是学生进一步研究多面体和旋转体的基础。因此,它起着承上启下的作用。同时,通过本节课的学习也可以培养学生的空间想象能力和逻辑思维能力,为培养学生的创新意识和创新能力提供了一个良好的契机。
2.教学目标
(1)知识目标:使学生掌握二面角的概念,二面角的平面角的定义、作法以及这些知识的初步应用。
(2)能力目标:培养学生的空间想象能力、逻辑思维能力、知识迁移能力及运用数学知识和数学方法观察、研究现实现象的能力。
(3)德育目标:通过对实际问题的分析、探究,激发学生的学习兴趣,并让学生明白:数学和生活是密不可分的。
(4)情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。
3.重点、难点及关键
重点:二面角的平面角的定义及其作法
难点: 面角的平面角的作法
关键:求作二面角的平面角
二、教学方法和手段
培养学生数学素质,首先数学课堂教学要素质化,即在课堂教学过程中,加强知识发生过程的教学,充分调动学生思维的主动性、积极性;有效地渗透数学思想方法,发展学生个性品质,从而达到提高学生整体的数学素养的目的。根据这样的原则和所要完成的教学目标,我采用如下的教学方法和手段:
(1)教学方法:观察发现、启发引导、探索相结合的教学方法。启发、引导学生积极的思考并对学生的思维进行调控,帮助学生优化思维过程;在此基础上,提供给学生交流的机会,学生学会对自己的数学思想进行组织和澄清,并能清楚地、准确地表达自己的数学思想;能通过对其他人的思维和策略的考察扩展自己的数学知识和使用数学语言的能力。学生会自觉地、主动地、积极地学习。
(2)教学手段:利用多媒体教学手段。多媒体以声音、动画等多种形式强化对学生感官的刺激,这一点是粉笔和黑板所不能比拟的,采用这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标体现的更完美。
三、学法指导:观察分析、猜想证明及类比联想是学法指导的重点。让学生观察、思考后,总结、概括、归纳的知识更有利于学生掌握;为了加深知识理解、掌握和更灵活地运用,运用类比联想去主动的发现问题、解决问题,从而更系统地掌握所学知识,形成新的认知结构和知识网络,让学生真正地体会到在问题解决中学习,在交流中学习。这样,可以增进热爱数学的情感,应用数学的自信心和形成新的学习动力。
四、教学过程