分数除法的教学反思12篇

时间:2024-08-06 07:00:24 作者:皮皮侠 字数:37772字

下面是范文网小编整理的分数除法的教学反思12篇(分数除法教学反思简短),以供参考。

分数除法的教学反思1

  一、教材的处理

  按照教材安排,用分数乘法解决数学问题是在第二单元,用分数除法解决数学问题是在第三单元。如果分开来进行教学,学生由于受定式影响,学分数乘法应用题时,都用乘法;学分数除法时又都用除法,看似掌握很好,一旦混合一部分理解能力较差的学生就会混淆,看来还没有掌握“求一个数的几分之几是多少?”和“已知一个数的几分之几是多少,求这个数”这类题的分析方法。因此,我们就把两类应用题放在一节课进行对比教学。

  二、运用了体验式教学模式。

  启动体验阶段。我通过提出“我们为什么要学习数学?”来引导学生明确学习的目的性,从而调动学生学好本课知识的积极性。

  体亲历时阶段。首先是自主体验,通过学生自己的独立思考,列式计算;初步获得解决问题的方法;接着是小组体验,通过小组讨论,逐步形成共识;最后是班级交流,呈现学生的不同解题策略,分享他人的成果。

  总结内化阶段。引导学生比较两道例题,找出两道例题的异同,感悟到解决问题的一般方法。

  应用提升阶段。这个环节分成2步,(1)基本练习,通过比较,进一步巩固解决此类问题的一般方法。

  (2)拓展练习,通过让学生解决较难的此类问题,进一步培养学生分析问题、解决问题的能力。

  三、关注解决问题的方法指导

  这节课,我不仅关心学生是否会解答问题,更关注解决问题是采用了什么方法。首先通过让学生独立做、小组讨论、全班交流等方法得出解决这类数学问题的一般方法:先划出题中的关键句、圈出单位“1”,再写出关系式,然后代入数据,最后列式解答。

  四、不足之处

  在练习时,大部分学生能用所学的方法来解决问题,但仍有个别学生用自己的方法来解决问题。对这少部分学生,教师既要肯定他们的方法是正确的,但要引导他们最好采用所学的一般方法, 这样便于学习“稍难的分数、百分数的解决问题”。

  总之,数学教学注重的是培养学生的逻辑思维。所以不管在什么类型的应用题教学中,分析数量关系应该是教学的重中之重,我们应该潜移默化的给学生渗透一些分析问题的方法,提高学生分析问题的能力。

分数除法的教学反思2

  《分数和除法的关系》教学反思分数和除法的关系主要引导学生探索并理解分数与除法的关系,教材呈现的直观的情境图:把3块饼平均分给4个小朋友,每人分得多少块?分饼的情境,对于五年级的学生来说相当熟悉,不但生活中有,以前的课本知识中也有,生活、学习的经验体会到和以前分饼的问题有相同之处,都是用饼分给一些小朋友,每个小朋友可以分得多少个饼的问题,算式是34=?,有直观的情境图帮助学生思考,有学生知道这个算式的结果是3/4块。借机可以让全体学生直观地体会结果不满1时可以用分数表示,直观帮助学生初步体会分数与除法的关系。

  验证34是否是3/4块,也就是每人分得是3/4块饼吗是这堂课的难点,操作能帮助学生理解。方法一是一个饼一个饼地分,将第一个饼平均分成4份,每个小朋友分得其中的一份,也就是分得1/4个饼,用同样的方法分别将第二、第三个饼也分,每个小朋友还是分得1/4块饼,三次一共分得3个1/4块饼,合起来是3/4块饼;方法二是三个饼叠在一起分,平均分成4份,每个小朋友分得其中的一份,也就是每人分得3块的1/4,有3个1/4块饼,即3/4块。操作、图像都是直观的不同手段和形式,同样可以帮助学生理解3/4块饼得到的过程,形成丰富、准确的表象。

  观察等式34=3/4、35=3/5可以发现分数和除法之间的关系,有了板书的直观支撑,学生很容易知道被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数的分数线;有了板书的直观支撑,学生很容易知道除法与分数的区别,除法是一种四则运算之一,而分数是一种数,相对于自然数、小数而言的另外一种形式的数。在理解、掌握分数与除法关系的基础上,通过练习让学生进一步沟通分数与除法之间的关系,形成相应的技能。如,先将被除数改写成分子,后将除数改写成分母来的比较简单,且不容易出错等等。板书是可以一直留在学生视线中的直观媒体,便于学生反复观察、比较,可以帮助学生获得相应的结论。

  情境图、动手操作、直观演示、板书这些形式和手段,可以帮助学生直观地理解知识和运用知识。试一试是让学生把低级单位的单名数换算成高级单位的单名数,题目:7分米=( )/ ( )米 23分=( )/ ( )。学生交流中有两种思路,一是运用分数的意义来解决问题的,把1米看做单位1平均分成10份,7分米是这样的7份,所以7分米=7/ 10米;二是低级单位换算成高级单位时,用除以进率的方法解决问题,即710=7/10(米)。运用分数的意义和规律准确完成单位之间的换算,学生在思考时是离不开直观的支撑的。直观是学生理解的基础,直观是沟通知识的桥梁。

分数除法的教学反思3

  本节课的内容是在学生学习整数除法、分数乘法的计算和倒数的基础上进行教学的。本节课的重点是理解分数除法的意义,掌握分数除法的计算方法。

  成功之处:

  1.找准学生的最近发展区,降低学生学习难度,注重数学思想方法的渗透。在教学中,我通过板书课题:分数除法,让学生进行猜想今天所学的知识与前面所学的知识有什么联系,通过学生的回答,得出与整数除法、分数乘法和倒数有联系。然后在新课的教学中,通过例1学生非常轻易的得出分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中的一个因数,求另一个因数的运算。在例2的教学中,通过折纸过程的演示学生可以清楚的看出:4/5÷2=4/5×1/2=2/5,发现分数除法与分数乘法、倒数之间的联系,从而得出分数除以整数等于分数乘这个整数的倒数。这样通过建立最近发展区,学生丝毫没有感到新知识有多难,而是比较轻松愉快地获得新知识,同时注重了对数学转化思想的渗透,使学生充分感受到在学习中,原来泾渭分明的两种运算,居然可以转化,计算方法的每一步,其实就是新旧知识、方法的转化。

  2.重视算法的探索过程,让学生不仅知其然,还要知其所以然。在例2的教学中,以折纸实验为载体,让学生在折一折、涂一涂的过程中逐步发现分数除法的计算方法,诱导学生经历由特殊到一般的探索过程,从中悟出把一个数平均分成几份,就是求这个数的几分之一是多少。在例3的教学中,通过画线段图来验证学生的猜想,从而得出除以一个不为0的数等于乘这个数的倒数。

  不足之处:

  由于教学了三个例题,内容较多,导致练习的的时间较少,学生对于分数除法的计算不够熟练。

  再教设计:

  调整教学环节时间的分配,缩短对分数除法意义的教学,整合例2与例3的教学内容,使例3不仅仅通过线段图得出,也可以通过商不变规律、等式的基本性质等不同方法进行验证。

分数除法的教学反思4

  一、教学内容:分数与除法,教材第65、66页例1和例2

  二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。

  2.使学生掌握分数与除法的关系。

  三、重点难点:1.理解、归纳分数与除法的关系。

  2.用除法的意义理解分数的意义。

  四、教具准备:圆片、多媒体课件。

  五、教学过程:

  (一)复习

  把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)

  (二)导入

  (2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)

  (三)教学实施

  1.学习教材第65 页的例1 。

  (1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)

  (2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?

  通过练习,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷3得不到一个有限的小数时,又该如何表示?这一问题激发了学生探索的积极性,创设解决问题的情境,研究分数与除法的关系。

  ( 3)指名让学生把思路告诉大家。

  就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数来表示,这一份就是块。

  老师根据学生回答。(板书:1 ÷ 3 =块)

  (4)如果取了其中的两份,就是拿了多少块?(块)怎样看出来的?

  通过这样的练习,为下面的操作打下基础。

  2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法

  3.学习例2 。

  ( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。

  老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

  通过演示发现学生有两种分法。

  方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个,3 个饼共得到12个, 平均分给4 个学生。每个学生分得3个,合在一起是块饼。

  方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到块饼,所以每人分得块。

  讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

  两种分法都强调分得了多少块饼,让学生初步体会了分数的另一种含义,即表示具体的数量。借助学具,深化研究。

  ( 3 )加深理解。(课件演示)

  老师:块饼表示什么意思:

  ①把3块饼一块一块的分,每人每次分得块,分了3次,共分得了3个块,就是块。

  ②把3块饼叠在一块分,分了一次,每人分得3块,就是块。

  现在不看单位名称,再来说说表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)

  ( 4 )巩固理解

  ① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=(块)

  ②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)

  ③从刚才的研究分析,你能直接计算7÷9的结果吗?()

  借助学具分饼、想象分的过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。

  4.归纳分数与除法的关系。

  ( l )观察讨论。

  请学生观察1÷3 = (块)3÷4 =(块)讨论除法和分数有怎样的关系?

  学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)

  用文字表示是:被除数÷除数=

  老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。

  ( 2 )思考。

  在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

  ( 3 )用字母表示分数与除法的关系。

  老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

  老师依据学生的总结板书:a÷b = (b≠0)

  明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

  5.巩固练习:

  (1)口答:

  ①7÷13= =( )÷( ) ( )÷24= 9÷9= 0.5÷3= n÷m=(m≠0)

  ②1米的等于3米的( )

  ③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。

  解释0.5÷3= 是可以用分数形式表示出来的,但这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。

  (2)明辨是非

  ①一堆苹果分成10份,每份是这堆苹果的 ( )

  ②1米的与3米的一样长。( )

  ③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的。( )

  ④把45个作业本平均分给15个同学,每个同学分得45本的 。()(3)动脑筋想一想

  ①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  ②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?

  教学反思:

  教材分析:本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。

  设计意图:

  1.直观演示是学生理解分数与除法的关系的前提:由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的就是张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是张饼的理解。学生操作经验的积累有效地突破了本节课的难点。

  2.培养学生提出问题的意识与能力是培养学生创新精神:本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。

  3.注重了知识的系统性:数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对0.5÷3=,部分学生会觉着的=表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

分数除法的教学反思5

  人教版六年级上册第三单元“分数除法应用题”的教学是本册的一个教学重点和难点。很多老师都深感在此处和学生说不清,教学效果不佳。我个人通过在本段时间的教学和反思,自认为找到了一些基本的“小窍门”,和大家交流一下我的一些比较成功的做法。

  一、加强前后知识之间的联系,实现知识的正迁移。

  要想第三单元学生学的顺利,第二单元知识的学习一定要铺垫好。

  一是,一个数乘分数的意义一定要理解好,让学生深刻地认识到:求一个数的几分之几是多少用乘法计算。

  二是,能快速地根据题中的关键句判断出谁是单位“1”。比如教学分数乘法应用题时,首先要注意引导学生看出是哪两个量在比较,谁是单位“1”?怎么确定的?这可以通过题意画图来说明。通过学生实践,让学生归纳出快速找单位“1”的方法:是“谁”几分之几,相当于“谁”的几分之几,比“谁”多(少)几分之几,“谁”就是单位“1”。最简单的方法是:分率前面的量就是单位“1”。

  三是,学生要熟练掌握画线段图的方法。比如要先画单位“1”(因为单位“1”是比较的标准,所以要先画),再画比较量。如果是“部分”与“整体”相比较的关系,可以画一条线段表示,如果是“两个不同的量”相比较,就要用两条线段表示。

  四是,能根据线段图或关键句快速写出题中的“等量关系式”。其中根据应用题中的“关键句”进行分析比较快捷。

  例:“柳树是杨树的 ”等量关系式:杨树× =柳树

  “柳树比杨树多 ”等量关系式:杨树+杨树× =柳树 或者 杨树×(1+ )=柳树 这样学生在学习用方程解决分数除法应用题时“找等量关系式”就轻松多了。

  二、教学分数除法应用题的时候要复习到位,唤醒学生已有的知识经验。

  比如教学第三单元分数除法“解决问题”例1的时候,就要复习一下学生学习第二单元分数乘法“解决问题”例1的知识,如从关键句中找单位“1”、说出等量关系式等。教学分数除法解决问题例2时,就要对应复习第二单元乘法解决问题例2和例3的知识。一节课只有事先的工作做得好,才能达到事半功倍的效果。

  三、在教师的引导下提高学生读题、分析题的能力。

  刚开始学习的时候,老师常常都引导学生根据具体的线段图来找分数除法中的等量关系式,以达到“数形结合”的目的,想法是好的,但效果却不尽人意,让学生每道题都画线段图也不现实,时间也不允许。所以,在学生掌握了画线段图分析数量关系后,我就让学生扔掉“线段图”这根拐棍,引导学生从关键句的字面上来分析、理解,从而发现找“等量关系式”的快捷方法。如:柳树比杨树多 。引导学生分析:①谁与谁相比较?(柳树与杨树相比较)②谁是单位“1”?(杨树)③多 是多“谁”的 ?(多杨树的 )④到底多多少,具体的量怎么算?(杨树× )⑤这句话的意思就是:柳树比杨树多了杨树的 。所以等量关系式应该是怎么样的?(杨树+杨树× =柳树)

  当然,还有一种等量关系式:杨树×(1+ )=柳树 可由以下几个问题入手:①柳树比杨树多 ,就是比单位“1”多 ,柳树应该是杨树的几分之几?(1+ = )②即柳树的棵树=杨树的 ,所以等量关系式应该是怎么样的?③根据这个等量关系式,想想用算术方法应该怎么列式?为什么?柳树的棵树和 之间有什么关系?(对应关系,从而导出:对应量÷对应分率=单位“1”的量)。

  学生等量关系式找到了,就能很容易用方程或者算术方法解决分数除法问题了。

  总之,我通过运用以上的教学方法,达到了非常好教学效果,班级成绩也在学年一路领先。

分数除法的教学反思6

  教学分数除以整数时,课堂上,我帮助学生首先理解了分数除法的意义,接着出示例题:把1米长的铁丝平均分成3段,每段长多少米?学生列出算式后,接着探究算法。出乎我意料的.是学生经过思考后,争先恐后地说出了5种算法。学生的每种算法把算理都解释得非常清楚。我也被学生的情绪带动起来,对他们的每种算法不由得说:“你的想法真独特”。学生也被他们自己能够想出多种算法所鼓舞着。我接着让他们继续计算,使学生发现上述的方法并不适用于所有的计算题目。只适合于用乘倒数和商不变的性质解决。通过讨论归纳出:分数除以整数(0除外)等于乘这个数的倒数是最具普遍性的方法。学生获取的这个结论是在自己充分感知的基础上得出的:他们通过计算实践,逐步明确通用的方法只有两种(即乘倒数和运用商不变的性质)。

  下课以后,我回忆这一节充满了学生思维智慧的数学课,使我感悟颇深。《新课标》指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。在教学中只有确立了学生的主体地位,优化学习过程,才能促使学生的自主学习过程。在以往的教学中,教师往往是代替学生发言,代替学生思维,代替学生说出结论,这根本不能体现学生的主体性。久而久之会慢慢抹煞孩子的创新意识。在教学中教师要培养学生的创新意识,发挥学生的主体性,不代替学生去思维。在计算教学中,一些教师怕学生思考,会出现思维分散,偏离重点,尤其是一些公开课,更不敢放手让学生去思考。这实际上是教师缺乏对学生的正确引导,导致不敢放手让学生去思考,最后只能自己替学生思考、归纳、总结。计算教学要体现学生思维的开放性。鼓励学生解决问题策略的多样化,就要让学生成为学习的主人,把思考的空间留给学生。在本课中,我比较注重学生思维的开放性,充分让学生自己去利用已有知识和经验,去寻找解决的计算方法,学生通过长期的训练,已能通过各种思维去寻找解决的办法。每种方法都可以看作是一种创新意识的体现。我认为这样的思维活动体现了以学生为主体的学习活动,对学生理解数学是非常重要的。学生的学习不是被动地吸收课本上现成的结论,而是一个亲自参与的充满丰富思维活动的实践和创新的过程。同时在数学课堂教学中我注重对学生的评价,力争做到评价及时、准确。促使每个学生自主地发展,逐步达到培养学生自主学习、自主创新的能力,全面提高素质。

分数除法的教学反思7

  为了更好到激发学生主动积极地参与分数除法应用题学习的全过程,引导学生正确理解分数除法应用题的数量关系。因而在设计时,我从学生已有知识出发,抓住知识间的内在联系,通过对分数乘法应用题的转化,使学生了解分数除法应用题的特征,并借助线段图,分析题目中的数量关系,通过迁移、类推、分析、比较,找出分数乘除法应用题的区别和联系及解题规律。

  一、关注过程,让学生获得亲身体验。

  教学中,为让学生认识解答分数应用题的关键是什么时,我故意不作任何说明,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

  在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,是因为大多数时间我在课堂教学中为了自己省心、学生省力,往往避重就轻,草草带过,舍不得把时间用在过程中,总是急不可待,直奔知识的技能目标,究其根由,在于教师的课堂行为,我缺乏必要的耐心。或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。

  因此在今年整体的教学中已经改变了自己的教学方法,尤其在本节课上我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。教师在教学中准确把握自己的地位。教师真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显了学生的主体地位,体现了生本主义教育思想。也只有这样才能真正落实《数学课程标准》中,“在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心”的目标,让学生的思维真正得到发展。

  二、多角度分析问题,提高能力。

  在解答应用题的时候,我通过鼓励学生尽量找出其它方法,让学生从多角度去考虑,这样做拓展了学生思维,引导了学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

  三、在充分的感知、体验的基础上比较分析,水到渠成的完成求“1”的量用方程做或算术法做,沟通了新旧知识的联系,又揭示新知识的本质属性。

  四、不仅巩固知识,给不同层次的学生起到不同的教学作用,又能为归纳求“1”的量的应用题的方法奠定基础。

分数除法的教学反思8

  本课教学的内容是分数除以整数,在教学过程中,要让学生理解分数除以整数的意义,并掌握分数除以整数的计算方法。有了分数乘法的学习基础,学生们能够很快适应这一课的学习方式。

  为了帮助学生更好地理解分数除以整数的意义和计算方法,教学中,运用数形结合的教学思想。把符号语言和图形语言很好地结合起来,把抽象的过程直观展示出来,通过学生的直观体验,将文字语言和图形相结合,从而使学生理解分数除以整数的意义和计算方法。

  但是学生自主探究,合作交流时时间的不多,没有给学生更多的表达空间。部分学生对分数除以整数的计算法则理解不够,除法变成乘法后,除数没有变成相应的倒数。分数除以整数时,应该乘这个整数的倒数。没有正确理解分数除法结果的规律,一个数除以比1小的数,结果比这个数要大。有些比较大小的题目可以不用计算,直接运用计算规律就可以判断出来,但是学生不太会应用。

  在今后的教学中,我要加强对学生的训练,让学生真正理解、掌握做题技巧,做题方法,真正的学会学习。

分数除法的教学反思9

  根据教材总复习的教学内容,我对用分数乘除法解决问题复习后,觉得学生对这部分知识掌握的不好,现反思如下:

  从本学期进入分数乘除法解决问题的教学时,学生学习用分数乘法解决问题后,在练习训练时就分数乘法算式做题,没有真正理解题中的数量关系的含义。在学习用分数除法解决问题时,学生做练习题时就用分数除法算式做题,也没有理解题中数量关系的含义。我也反复强调过,学生就是不在意。后来分数乘除法的问题同时出几个题后,学生就混淆了,大部分学生就乱列算式。现在进行总复习了,学生还是这样,我就反思怎样让学生学懂这部分内容。我想,我采取以下方法来弥补这部分教学:

  一、是多出这类练习题进行训练;

  二、是分析这类题时教给学生一个模式,这个模式是:读题——找出已知条件和问题——找出已知条件中与问题相同或相关的句子——找出单位“1”的数量——分析题中相等的数量关系——根据数量关系列算式解答.

  比如“一件衣服现在降价2/5”,这句话把( )看作单位“1”的量,数量关系式是:

  ( )×2/5=( )。

  好几位学生都填错了,有的填的是“现价”,有的填的是“降价”,看来学生对“现在降价2/5”这种缩写式的关键句不能够真正理解,弄不清这句话的本来意思,其实只要把这句话扩一扩,就不难找准单位“1”了——“现在比原来降价2/5”,其实这种简略式语句在练习中也有过几次,也都让他们扩过句,但是可能练习得还不够,学生的见识还嫌少。

  再结合例题加以说明.

  (1)有一条鲸全长是21米,头部占二十一分之五,求头部的长度。

  (2)一些米,吃了4吨,是其中的十六分之五,求这些米重多少?

  帮助学生复习回忆有关解决这一类问题的基本方法。

  “一找”找出关键句。

  第(1)题的关键句是:头部占二十一分之五,

  第(2)题的关键句是:是其中的十六分之五,

  “二列”

  帮助学生根据关键句分析了解其中的具体含义并且列出等量关系式。

  第(1)题中的等量关系式是:鲸的全长×二十一分之五=头部的长度

  第(2)题中的等量关系式是:全部米的重量×十六分之五=吃掉米的重量

  “三算”

  帮助学生根据等量关系式列出算式并完成计算。

  第(1)题中单位“1”已知,所以我们列一个乘法算式就可以了。

  第(2)题中单位“1”未知,这时候题目要求我们设单位“1”为未知数X.

  总的来说“分数乘除法解决问题”有6种基本形式:①求一个数的几分之几是多少②求比一个数多几分之几的数是多少③求比一个数少几分之几的数是多少④已知一个数的几分之几是多少,求这个数⑤已知比一个数多几分之几的数是多少,求这个数 ⑥已知比一个数少几分之几的数是多少,求这个数.

分数除法的教学反思10

  理解与掌握分数与除法的关系及其应用。不但可以加深对分数意义的理解,而且为后面学习假分数,带分数,分数的基本性质以及比,百分数打下基础。所以,分数与除法的关系及应用在整个教材中起到了承上启下的重要作用。执教教师能从整体上把我教材,激励学生积极参与教学活动:问题让学生自己解决;方法让学生自己探索;规律让学生自己发现;知识让学生自己获得;课堂上给了学生充足的思考时间和活动空间,同时学生有了表现自我的机会和成功的体验,培养了学生的自我意识,发挥了学生的主体作用。整个教学过程,结构严谨,层次分明,符合学生的认知规律,是学生独立地发现并应用了“分数与除法的关系”,发展了学生的思维能力,教学效果显著。

  新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究,交流合作”特征的多样化的学习方式,从而促进学生知识,技能,情感,态度和价值观的整体发展。因此,教学学习活动应该是一个生动活泼的,主动的,富有个性的过程,教学的教与学的方式,应该是一个充满生命力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即一块饼的,3块饼的,通过这一过程,学生充分理解了“3÷4=”的算理。

  探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现教学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,教师让学生充分动手分圆片,让他们在自己的尝试,探究,思考中,不断产生问题,解决问题,在生成新的问题,给学生留足了操作的空间,因此学生对分数与除法的关系理解得比较透彻。

分数除法的教学反思11

  德国教育家第斯多惠说过这样一段话:如果使学生习惯于简单地接受和被动地工作,任何方法都是坏的;如果能激发学生的主动性,任何方法都是好的。反思整个教学过程,我认为这节课教学的成功之处有以下几方面:

  1、教学内容“生活化”

  《国家数学课程标准》指出:“数学教学应该是,从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”纵观整节课的教学,从引入、新课、巩固等环节的取材都是来自于学生的生活实际,使学生感到数学就在自己的身边。

  2、解题方法“多样化”

  《数学课程标准》中,将“在解决问题的过程中发展探索与创新精神,体验解决问题策略的多样性”列为发展性领域目标。而这一目标的实现除了依靠学生自身的生理条件和原有的认知水平以外,还需要相应的外部环境。这节课上学生一共提出了5种解题方法,其中有3种是我们平时不常用的,第5种是我也没有想到的。我从学生的需要出发及时调整了教案,让每一个想发言的学生都能表达自己的想法,尽管他们有些数学语言的运用还不太准确,但我还是给与了肯定与鼓励。在这种宽松的氛围下,原本素不相识的师生在短短40分钟的时间里就产生了情感上的交融。学生有了运用知识解决简单问题的成功体验,增强了学好数学的信心,并产生进一步学好数学的愿望。虽然后面还有两个练习没有来得及做,但我认为对一个问题的深入研究比盲目地做十道题收获更大,这种收获不单单体现在知识上,更体现在情感、态度与价值观方面。

  3、师生交流“情感化”

  数学教学改革,决不仅仅是教材教法的改革,同时也包括师生关系的变革。在课堂教学当中,要努力实现师生关系的民主与平等,改变单纯的教师讲、学生听的“注入式”教学模式,教师应成为学生学习数学的引导者、组织者和合作者,学生成为学习的主人。纵观整个教学过程,教师所说的话并不多,除了“你是怎么想的?”“还有其他的方法吗?”“说说看”等激励和引导以外,教师没有任何过多的讲解,有学生讲不清楚,教师也是用商量的口吻说:“谁愿意帮他讲清楚?”当一次讲不明白,需要再讲一遍时,教师也只是用肢体语言(用手势指导学生看图)引导学生在自己观察与思考的基础上明白了算理。学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。

  4、值得商榷的几个方面:

  (1)形式能否再开放一些

  (2)优生“吃好”了,能否让差生也“吃饱”

分数除法的教学反思12

  一、问题展示:

  在分数除法这一单元中,主要展示的是分数除以整数、整数除以分数、分数除以分数这三种类型的计算方法,其中,在分数除以整数的教学过程中,学生接受得比较快,学习效果也很好,但是在教学整数除以分数后,通过学生的练习反馈,发现学生在计算中出错比较多,主要表现在一下几方面:

  1.在除号与除数的同步变化中,学生忘记将除号变成乘号。

  2.在除数变成其倒数的时候,学生误将被除数也变成了倒数。

  3.计算时约分的没有及时约分,导致答案不准确。

  二、原因分析

  为什么会形成这些错误现象,通过对比分析,可能有一下原因:

  1.教学方法上:例题讲解分量不够;教学语速较快;学困生板演机会不够多;讲得多、板书方面写得少。

  2.学生学法上:受分数除以整数的教学影响,形成了思维定势,以为每次都是分数要变成倒数,整数不变,从而导致同步变化出现错误;其次,学生听课过程中不善于抓重点,在分数除法中,被除数是不能变的,同步变化指的是除号和除数的变化;最后,学生的学习态度和学习习惯也直接影响了本科的教学效果。

  三、解决办法

  1.增加学生板演的机会,

  2.课堂上,对于关键性的词语,要求学生齐读,用以加深印象。

  3.辅差工作要求学生以同位为单位,进行个别辅导。